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PACKET-ERROR PROBABILITY ANALYSIS FOR UNSLOTTED
FH-CDMA SYSTEMS WITH ERROR CONTROL CODING

INTRODUCTION

In frequency hopping (FH) systems, a code-division multiple-access (CDMA) capability can be
achieved where the FH patterns take on the role of codes. Since the codes usually are only quasi-
orthogonal rather than truly orthogonal, frequency hits occur and result in loss of data. In the
analysis of such systems, the time-slotted case is usually considered in which the packet length is
equal to the slot duration. In this case a packet transmission is subjected to a constant number of
interfering users throughout its duration. When Reed-Solomon (RS) error control coding is used and
all frequency hits are assumed to result in symbol errors, the packet-error probability can be evaluated
straightforwardly [1] as

Prfpacket error I k other users) = E 0 Pk (1 - Pk)X i, (1)

where Pk is the symbol error probability given k other users are transmitting simultaneously over the
same wideband channel, and T= L(n - v)/2I is the error correction capability of the RS(n,v)
code.

In this report we consider unslotted systems in which the level of interference varies throughout
the transmission of the packet because users may begin their transmission at any time. Consequently,
the symbol error probability also varies throughout the packet duration, and the analysis becomes
much more difficult. The problem is further complicated by the dependence of symbol errors within
the packet, since the interference levels experienced by the symbols of a packet are not only time
varying, but also they are dependent. In Ref. 2, Pursley bounds the packet error probability of
unslotted FH-CDMA systems in which the interference level varies over the packet duration by the
packet-error probability of the system with the maximum interference level. Daigle [3] approximates
the packet error probability of an unslotted direct sequence CDMA scheme without considering the
effect of error control coding.

Often, because of the complexity of the exact analysis, a much simpler other-user interference
model is used in the context of CDMA systems. In this model, the probability of packet error is con-
sidered to be equal to one if the number of other transmissions throughout the packet duration is
greater than T, a threshold level, and equal to zero otherwise. This step function channel model has
been studied in Ref. 4 for fixed-length messages, and in Ref. 5 for exponentially distributed message
lengths.

In this report we present an exact analysis of unslotted FH-CDMA systems that use RS coding.
Fixed length packets are assumed. The computational task for this evaluation is enormous; thus it has
been possible to evaluate performance only for small codeword sizes. We have also developed upper
bounds and close approximations to the packet-error probability that permit the evaluation of more

Manuscript approved January 5, 1989.
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practical systems. We have demonstrated, as a result of our analysis, that the bounds that are based

on the maximum number of interferers present during the packet duration are rather loose, and that
threshold models do not provide a satisfactory characterization of system performance. A preliminary
condensed version of this analysis was presented in Ref. 6, and a more detailed development can be
found in Ref. 7.

SYSTEM MODEL

A population of users transmits packets containing a fixed number of symbols on a wideband FH

channel consisting of q orthogonal narrowband frequency bins. One M-ary symbol, representing
log2 M bits, is transmitted per hop. The hopping patterns are assumed to be generated by a first-order

Markov process, so that the frequency bin for each hop is different from that of the previous hop, but
equally likely to be any of the other q - 1 frequency bins.

This system is completely asynchronous. It is asynchronous at the packet level in the sense that

packet transmission may begin at any time; consequently, packets may overlap for a portion of their
duration. It is also asynchronous at the hop level; thus frequency hits may be present for only a por-

tion of the duration of the symbol. However, all frequency hits are assumed to result in symbol

errors, even if the interference is present for only a small fraction of the symbol duration. The result-

ing symbol error probability given that k other users are simultaneously transmitting over the channel
is, as discussed in Refs. 1 and 8,

Pk = 1 - (1 - 2/q)k(1 - Po), (2)

where p0 is the probability of symbol error in the absence of other-user interference, i.e., the symbol
error probability caused by background noise.

Packet sizes are chosen so that each packet can be encoded as exactly one RS codeword. Each

packet consists of n = M M-ary symbols. An RS(n, v) code can correct any pattern of no more than

7= L(n -v)/2j symbol errors in a codeword.* We have considered extended RS codes of rate
1/2, i.e., (nn /2) codes, which are capable of correcting any pattern of no more than r = Ln /4]
errors.

PACKET-ERROR PROBABILITY: EXACT ANALYSIS

To determine the exact packet-error probability of the unslotted FH-CDMA system with RS cod-
ing, it is necessary to determine the time-varying level of other-user interference present throughout a
packet's transmission. We consider the case when N, the total number of other active channel users
during the transmission of a particular packet, is given. To describe this time-varying interference
process, we partition the interferers into two groups: "initial interferers" and "final interferers."
Consider a given user, user 1, whose packet transmission begins at time to and ends at to + T,

where T is the fixed packet duration. When this transmission started, hi packet transmissions were
already in progress. These hi channel users are the initial interferers. Each of these will terminate
transmission during the interval (to,to + 7). Now, during user l's packet transmission If users
begin transmission of their packets. These are the final interferers, who will still be transmitting when
user 1 ends its transmission (see Fig. 1). Clearly, Ii + If = N. t

*Undetected codeword error probability is less than 1 Pr!, which is negligible in many applications.
tIt is assumed that the interfering packets cannot arrive simultaneously with the tagged packet. Thus an interfering packet falls
unambiguously into either the class of initial or final interferers.
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1 2 ... I 12... I

to 0 to+ T

Fig. I - i initial and If final interferers

Now define the departure state ] = (X1, i2, *-, in), where j, denotes the number of initial
n

interferers that terminate transmission during the 1th symbol duration. Note that j II = Ii. Like-
_ 1~~~~~~~~~~~=1

wise define the arrival state k = (kI, k2, ... , k0 ), where k, denotes the number of final interferers
n

that begin transmission during the lth symbol duration. Again, we have k = If. For example,

for the case of n = 4 symbols per packet, N = 10 other channel users, and hi = 3 interferers already
transmitting when user l's transmission is started, one possible departure state is (0,1,0,2). That is,
one of the Ii interferers finishes transmitting during the second symbol of user l's packet transmis-
sion, and the remaining two interferers finish during the last symbol. In this example, If is equal to 7,
and one possible arrival state is (3,2,1,1). That is k, = 3 interferers start transmitting during the
first symbol of user l's transmission, k2 = 2 start during the second symbol, k3 = 1 starts during
the third symbol, and k4 = 1 interferer starts during the last symbol. Note that numerous possible
departure and arrival state descriptions represent the departure of the the Ii initial interferers and the
arrival of the If final interferers. Given it and N, these states are determined by an exhaustive search.

We assume that each initial interferer is equally likely to terminate transmission during any sym-
bol; and similarly, each final interferer is equally likely to start transmission during any symbol. The
probability of the departure state j and the probability of the arrival state k, given Ii and N, are then
given by the multinomial distributions,

hI!(lIn)i
PrU |I I, NJ = .

Jl!2! . . !

If! (l/n),f
P4/cl I I, NJ =(3)

kl!k2! . kn

Let us define the interference state xl = (xI, x2 , . .. , x,) where xl denotes the total number of
interferers present during the Ith symbol transmission. The value of xl is determined by

xl H E j, + Ek, I = 1, 2, .. ,n (4)
v~i v~i

since the total number of interferers present during the 1th symbol is equal to the total number of ini-
tial interferers Ii less the number of initial interferers that terminated transmission during the first
(I - 1) symbols, plus the number of final interferers that arrived during the first 1 symbols. For sim-
plicity we consider that an interferer is present during the entire symbol in which it starts or ter-
minates transmission, even though we do not require symbol synchronization. This is consistent with
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our earlier assumption that all hits result in symbol error even if the overlap is a small fraction of the
symbol duration. Thus, xl is actually the maximum number of interferers present during the lth
symbol. In the above example the interference state x that corresponds to the departure and arrival

states, j = (0,1,0,2) and k = (3,2,1,1), is x = (6,8,8,9). Note that many different j and k pairs
may combine to produce the same interference state x.

Now the probability of the interference state xi is determined from the probabilities of all possi-

ble departure and arrival states j and k that combine to produce xl. Given the state xl, Ii, and N, we
have

Pr[xliI 1i,NJ = E Pru I hi, NJ Prtk I Ii, NJ, (5)

j,k EE

where_Ex is-the event that j and k satisfy, Eq. (4). The probabilities of the departure and arrival

states j and k, given Ii and N, are determined from Eq. (3).

Markov Analysis

A Reed-Solomon (n, v) code can correct any pattern of no more than r = L(n - v)/2I n-ary
symbol errors in a codeword. Thus the probability of packet error given the interference state xI is
equal to the probability that there are more than r symbol errors:

n
Prfpkt error X-}* = Pr.k symbol errors I X}. (6)

k = T+ 1

A Markov analysis approach is used to determine the probability of k symbol errors given x, N, and
Ii. We consider each symbol in the packet, one by one, starting with the first symbol. As each sym-
bol is considered, we determine the probability that the symbol is in error. We consider the probabil-
ity of the number of symbol errors in the packet thus far as the number of symbols considered is
increased from w to w + 1 for 1 < w < n - 1. Thus we define

Pw +I(h I 1) = (7)

Pr h symbol errors in the first w + 1 symbols I 1 symbol errors in the first w symbols).

Obviously, the only possible transitions from 1 symbol errors, when one more symbol is considered,
are to h = 1 and h = 1 + 1. Now the transition from 1 to 1 + 1 symbol errors occurs if the (w + 1)th
symbol is in error. Given the interference state xl, the probability of the (w + 1)th symbol being in
error is given as in Eq. (2),

PW + 1(l + 1I1 1) = Pr[(w + I)th symbol in error T xl

=1 - (1- 2/q)-+(1 -pO) (8)

*Note that "pkt" is used as an abbreviation for "packet" throughout this report.
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and thus,

P, +I (I 1) = Prt(w + I)th symbol correct I X}

= (1 - 2/q)X,+1 (1 - Po). (9)

Now define

pw(h) = Pr[h symbol errors in the first w symbols I XI, (10)

wherew=1, 2,..., nandh=1, 2,..., n. Thus,

pw(h) = Pw(h I h) p.- 1(h) + Pw(h I h-1)pp. 1 (h-1) (11)

with the initial condition p0(0) = 1. The distribution for pw(h) is then evaluated recursively until we
obtain

p,(k) = Prtk symbol errors I x}T, (12)

from which it follows that

n
Prtpkt error I I} = x p,(k). (13)

k =T+I

The probability of packet error given N and Ii, is given by

Pr{pkt error I Ii, NJ = S Prfpkt error I X-JPr[3E I Ii, NJ

n

= K 1P 1(k) Pr xliI |i, NJ. (14)

We assume that Ii is uniformly distributed between 0 and N*. Therefore,

1 N n

Prtpkt error I NJ = - 1 E =pn(k) Prr[x | i, NJ. (15)

The computational task for this performance evaluation is enormous. Two methods were used
for this performance evaluation. The first method, which did not use memory, required more CPU
time than the second method that used memory. However, the amount of memory required by the
second method for packet lengths greater than five symbols per packet was prohibitive. Calculations
were made, using memory, for packet lengths of n = 4 and 5, and without memory for n = 4, 5, 6,
7, 8. Table 1 summarizes the amount of CPU time required for these computations. Note that the
packet length of n = 6 does not correspond to a Reed-Solomon code. Calculation of the performance
for this packet length was performed with an arbitrary value of r to establish the additional amount of

*This assumption is consistent with Poisson arrival statistics.
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CPU time required when the packet length is increased by one symbol. When the packet length is
increased by one symbol, a conservative time factor was determined from the computations with and
without memory. The CPU time required if infinite memory were available was projected based on
the amount of time required for n = 4 and 5, and this conservative time factor. Note that even if
infinite memory is assumed, the exact performance evaluation of the common packet length of
n = 16 symbols per packet is not feasible. Thus efforts were made to develop an upper bound and
approximation to the packet-error probability.

Table 1 - CPU Time Required for
Packet Lengths of n = 4, 5, 6, 7, 8,
and 16 Symbols with or Without
Memory. Projected CPU Time
Required Is Given for Computations
with Memory.

CPU Time Required (yr:h:min:s)

*Projected CPU time required

UPPER BOUND ON THE PACKET-ERROR PROBABILITY

An upper bound on the packet-error probability was developed to permit the evaluation of sys-
tem performance when practical packet sizes are used. The approach of the upper bound is described
in this report. The transmission interval was partitioned into halves, quarters, or eighths, each con-
taining clusters of n /2, n /4, or n /8 symbols respectively. It is assumed that the interference level is
constant over the duration of the cluster and equal to the maximum level of interference actually
experienced by any symbol in the cluster. That is, this approximation mixes our exact analysis
approach with the approximation used in Ref. 4. Note that the smallest partition interval used was
eighths, since the computation of the exact analysis indicated that the computational limit was eight
symbols per packet. The number of clusters in the packet for a given partition is defined as b, where
b = 2, 4, or 8. Each cluster then consists of n lb symbols. The new interference state
x = (x 1,x2 , .. .,xb) describes the maximum number of possible interferers in the new clusters of the
packet, where xi denotes the maximum number of interferers in the ith cluster of the packet.

We must recognize that this new interference state x is simply the original interference state xi of
the packet with b longer symbols. The length of the new symbols is equal to the length of n lb old
symbols. With this knowledge, we realize that the probability of x with n symbols per packet, and
n lb symbols per cluster, is equal to the probability of x with b symbols per packet, which is given in
Eq. (5).

6

n Memoryless With Memory

4 00:00:00:59 00:00:00:13

5 00:00:05:60 00:00:00:58

6 00:00:24:40 00:00:04:24*

7 00:01:52:24 00:00: 19:45*

8 00:05:46:35 00:01:28:51*

16 25:00:00:00*
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A Markov analysis, similar to that used for the exact analysis, has been developed. Here, for a
given partition of the packet, b clusters (b = 2, 4, or 8), containing n lb symbols each, we consider
each cluster of the packet, one by one, starting with the first. As each cluster is considered, we
determine the probability that I symbol errors are in the cluster. We consider the probability of the
number of symbol errors in the packet as the number of clusters considered is increased from v to
v + I for 1 < v < n -1. Thus we define

Pv+±(h I i) = (16)

Prfh symbol errors in the first v + 1 clusters I i symbol errors in the first v clustersJ.

The only possible transitions from i symbol errors, when one more cluster containing n lb symbols is
considered, are to h = i + 1 symbol errors, where 1 = 0, 1, . . ., n lb. Now the transition from i to
i + 1 symbol errors occurs if there are I symbol errors in the v + Ith cluster. Given the new
interference state x, this is given by

Pv+1(i + II i) = PrI1 symbol errors in the (v +±)th cluster | x}

= Ln Pbi p{(l -.Px)n/b (17)

where p., is the probability of symbol error given xi interferers given in Eq. (2). As before, let us
define

pv(h) = Pr[h symbol errors in the first v clusters I xJ}, (18)

where v = 1,2, .2 . , b and h = 1, 2, . . ., n. Now,

h

pv(h) = aPv(h I h - k)pv _(h - k) (19)
k=O

with the initial condition p0(0) = 1. The distribution for pv(h) is then evaluated recursively until we
obtain

Pb(k) = Pr4k symbol errors in b clusters I x

= Pr/k symbol errors in packet | x}, (20)

from which we can form

n
Prfpkt error x} = S Pb(/k). (21)

k =r+I

7
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The probability of packet error given Ii and N, is thus bounded by

Prfpkt error I Ii, NJ c FPr(pkt error I LJPr[i I Ii, NJ
x

x K=r+ipk Prfi I Ii, NJ, (22)

and thus

1N nl
Prfpkt error I NJ < + E E pb(k)I Prji I| i, NJ, (23)

N±+1 I= _ [k=r+ 1J

since hi is assumed to be uniformly distributed between 0 and N.

APPROXIMATION OF PACKET-ERROR PROBABILITY

An approximation to the packet-error probability can also be derived to permit the evaluation of
the packet error probability for longer packet lengths. In the exact analysis, for a given Ii and N, we
evaluated the probability of packet error for each possible interference state xi for the transmitted
packet. Averaging over all possible x produced the packet-error probability given hi and N. For the
approximation, given Ii and N, we determine the expected value of symbol-error probability for each
symbol of the transmitted packet. Then, incorrectly asssuming that the symbol errors are indepen-
dent, we evaluate the packet-error probability when the symbol-error probability for each symbol is
given by its expected value.

As before, we partition tl-e N other channel users into Ii initial interferers and If final interfer-
ers. Starting with the initial interferers, we consider each symbol in the packet starting with the first
symbol. Let us define

ip = [number of initial interferers in the pth symbol]. (24)

The probability that Ii initial interferers are in the first symbol is equal to 1, i.e., Pri 1 = Ii = 1.0.
As in the exact analysis, we consider an interferer to be present during the entire symbol in which it
starts or terminates transmission; thus there must be Ii initial interferers in the first symbol. Now, the
probability that Ii-/k initial interferers are in the second symbol is the probability that k of the Ii ini-
tial interferers ended their transmission during the first symbol. That probability can be expressed as

Pr 2 =I - /I iI =I Lj i K lj n j (25)

Now, in general, the probability that 1 -k initial interferers are in the (j + 1)st symbol, given that 1
initial interferers are in the jth symbol, is the probability that k of 1 initial interferers ended their
transmission during the jth symbol, that is,

Prfij +1 = 1 - k I i} =l} = Ln { 1 [ -j +1 . (26)

8
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Now the probability that k initial interferers are in the (j + 1)th symbol given Ii, and N can be deter-
mined from

li-k
Prtij+l = k I Ii , NJ = Prfij+l = k I ij = k + m} Prfij=k + m I Ii, NJ (27)

m=0

and the initial condition Prfij = Iij = 1.0. This yields the distribution of initial interferers in each
symbol given Ii, and N.

To obtain the distribution of final interferers for each symbol, we again consider each symbol
in the packet starting with the first symbol. Let us define

fp = [number of final interferers in the pth symbol). (28)

Now, the probability that no final interferers are transmitting prior to the first symbol is equal to 1.0.
We call this the probability that no final interferers are transmitting in the 0th symbol, i.e.,
Prtfo = 0 = 1.0. Now, the probability that k final interferers are in the first symbol is the proba-
bility that k of the If final interferers started transmission during the first symbol. This can be
expressed as

Prff1 = k f fo = 0, N, IiJ = kJ ] L 
1 I (29)

In general, the probability that 1 + k final interferers are in the (j + 1)th symbol, given that 1 final
interferers are in the jth symbol, is the probability that k of the If - k final interferers started
transmission during the (j + l)th symbol, that is,

k W fj l, X lie = [Ik r| It [k -j- J If - I - kPr ff1 + =l±/c kI fj =1,N, IJ= Lk~ . K jA ].(30)

The probability that k final interferers are in the (j + 1)th symbol, given Ii and N, can be determined
by

Prljj + 1 = k I Ii, N) =
k
, Prffj + 1 = k I fj = k-m, N, Iij Prffj = k-m I Ii, N) (31)

m=0

and the initial condition Prffo = 0} = 1.0. This yields the distribution of final interferers in each
symbol given Ui and N.

The distributions of initial interferers and final interferers in each symbol are independent (given
Ui and N); thus the distribution of the total number of interferers in each symbol can be obtained by

k
Prttj=k I UI,NJ = aPrfij= m I Ii,N] Prffj = k-m l Ii, N) (32)

m=0

where tj is defined as the total number of interferers in the jth symbol.

9
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We can now determine the expected value of the probability of symbol error of the jth symbol,

N
pj = a Prtsymbol error I m interferers} Prftj = mi. (33)

m=0

Let us define an average symbol error probability state

P = (pI2i ... .P n) (34)

where Pi is the expected value of the probability of symbol error of the ith symbol. Assuming
independence of symbol errors, we can determine the probability of packet error given the average
symbol error probability state p as in the exact analysis. As mentioned above, this assumption is
incorrect; since the symbol errors are not independent, this results in only an approximation to the
packet-error probability. Now, we need to consider all possible occurrences of k errors in the code-
word and form the error state e = (e1 ,e 2, . . ., ek), and the correct symbol state
d = (d1 , d2, ... , dn- k) where ej denotes the symbol number of the ith incorrect symbol, and di
denotes the symbol number of the ith correct symbol.

Now, the probability of e, given N, Ii, and p, is given by

k n-k
Pre I N, Ii, Pj = fl Pe, fl(1 -Pdd) (35)

and thus the probability of packet error given N and Ui can be approximated by

n
Prtpkt error I N,IJ = E Prfe I N, Iij

k=T+l FEEk

n k n- k

5;EnF Pe. HO (1 Pdv)s (36)
k= r+1 eE Ek =1 v= l

where Ek is the set of all e states corresponding to k symbol errors, and the RS code used has an
error-correction capability of T symbol errors. Now,

1 N n k n-k
Pr+pkt error I NJ L E + E I Pe, H (1 Pd37)

N +IIt=0 k = -+l FeEk U = I = I

since all partitions of N are equally likely; that is, Ui is assumed to be uniformly distributed between 0
and N (again consistently with the assumption of Poisson arrivals).

Another approximation to the packet-error probability can be developed by calculating the
expected number of interferers transmitting during each symbol from the probability distribution of
the total number of interferers in each symbol. That is, given Prftj = k I Ii,NJ, calculate,

N
x; = a m Prftj = m I Ii, NJ. (38)

m =0

10
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Then the probability of symbol error of the jth symbol, given the expected number of interferers in
the symbol, could be determined as,

pj = Prtsymbol error I .interferers ] (39)

= 1 - (1 - 2/q)Xh(l - po).

Substituting pj for pj in Eq. (37) yields the second approximation.

SYSTEM PERFORMANCE

Packet-error probability, given N, was evaluated for several rate 1/2 RS codes as N was varied
between 1 and 10. In all cases the number of frequency bins was q = 50, and a noiseless channel
(i.e., po = 0) was assumed. Exact performance results were obtained only for the RS(4,2) and
RS(8,4) codes. Upper bounds and approximations were obtained for these codes as well as for
RS(16,8) and RS(32,16) codes.

The RS(4,2) and RS(8,4) codes have error-correction capabilities of r = 1 and 2 symbol errors
respectively. These are not realistic packet lengths since they permit the transmission of only very lit-
tle information and since the upper bound on undetected codeword error probabilities for the RS(4,2)
and RS(8,4) codes are equal to 1.0 and 0.5 respectively. However, the computation of the exact
packet-error probability of the system with the short packet lengths is very useful; it allows com-
parison with the upper bound and approximation to the packet-error probability. Computational limits
prevent the exact evaluation of the packet-error probability for longer packet lengths as discussed ear-
lier. The upper bound, with n lb symbols per cluster, b = 2, 4, and 8, was computed for the RS
codes mentioned above, as well as the RS(16,8) and RS(32,16) codes having error-correction capabili-
ties of r = 4 and 8 symbol errors respectively.

Figure 2 shows the results for the unslotted FH-CDMA system with RS(4,2) code. Note that
the approximation is extremely close to the exact packet-error probability. When the number of
interferers transmitting during the packet N is greater than or equal to 3, the approximation is within
5 % of the exact packet-error probability, while it is within 1 % for N 2 7.

The upper curve in each of the figures represents a slotted system in which all N interferers are
present during the entire packet transmission.

Figure 3 illustrates the performance of the unslotted FH-CDMA system with the RS(8,4) code.
As before, the approximation closely resembles the exact packet-error probability. When N 2 4 the
approximation is within 10% of the exact packet-error probability, while it is within 3% when
N 2 7.

For the system parameters considered, the approximation provides excellent agreement with the
exact results. It appears that the proportional difference between the exact packet-error probability
and the approximation decreases as N increases. Also note that the packet-error probability as a func-
tion of N does not resemble a step-function, thus indicating that a threshold model does not provide a
good indication of system performance, as demonstrated in Ref. 9.

Figures 4 and 5 illustrate the upper bound and approximation of the performance for the cases in
which the exact performance is not computable. Figure 4 shows the performance of the unslotted
FH-CDMA system with the RS(16,8) code. Figure 5 illustrates the approximation and upper bound
of the packet-error probability of the system with the RS(32,16) code.
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It is of interest to compare the packet-error probability of the system with time-varying interfer-
ence to that of the system with constant interference. Table 2 contains the number of constant interfer-
ers that produce the same probability of packet error as 10 interferers whose transmissions start or
stop within the packet duration, where we ignore the fact that this number must be an integer. The
comparison is given for RS(4,2), RS(8,4), RS(16,8), and RS(32,16) codes and q = 50 and 100 fre-
quency bins. For packet lengths of n = 16 and 32 symbols, the approximate packet-error probability
for N = 10 partial interferers was used for the comparison. Note that this number appears to
approach 5 as the code length increases.

Table 2 - Comparison of Time-Varying
Interference to Constant Interference

Constant Interference Level

Corresponding to 10 Partial Interferers

Code q = 50 q = 100

RS(4,2) 6.1 6.3

RS(8,4) 5.5 5.6

RS(16,8)* 5.15 5.15

RS(32,16)* 5.1 5.1

*Approximate packet-error probability for N = 10
partial interferers used for comparison.

CONCLUDING REMARKS

The packet-error probability performance of unslotted FH-CDMA with RS error control coding
is evaluated exactly for small packet lengths. Computational limits prevent the exact evaluation of
packet-error probability for longer packet lengths, and thus an upper bound and approximation to the
packet-error probability are derived and computed. The upper bound calculations are also limited
(though not quite as severely) by computational considerations, but the approximation is easily
evaluated for large codeword sizes.

In all cases considered, the packet-error probability as a function of the number of other
transmitting users does not resemble a step function. Thus detailed models that reflect channel charac-
teristics and coding properties are needed to provide an accurate evaluation of system performance.
Our previous observation [9] that the step-function channel model does not reliably predict perfor-
mance of spread spectrum multiple access systems is further confirmed by this study.
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